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Preface

The use of jump processes for modelling purposes has expanded over the
last couple of years. Lévy jump processes constitutes a subclass. By now
Lévy jump processes are considered as more realistic models for applications
in finance, mainly because the jump characteristics of the sample paths are
closer to real-life financial data than the paths of Brownian motion.

We consider the approximation of small jumps of Lévy processes by a nor-
mal random variable. Especially, we investigate simulations by use of series
expansions thoroughly, and we study how the approximation works in prac-
tice.

As an application of our results we consider a stochastic differential equation
of the (shifted) Ornstein—-Uhlenbeck type, driven by a non-Gaussian Lévy
process—in our case an a-stable Lévy motion.

Our investigation mainly aims at the use of non-Gaussian Lévy processes in
insurance and finance, but Lévy jump processes have by now been used ex-
tensively in many other areas, such as meteorology, seismology, turbulence
and signal processing of sonar and radar data. This indicates, that this text
could be relevant in other areas.

The basic theory of this thesis is based on the recent monographs of Bertoin
[6] and Sato [29].

The source code developed for use in this thesis is quite comprehensive and
therefore not printed in the appendix—the interested reader is encouraged to
download source code and programs on my web page www.actuary.dk/thesis.
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1 Lévy processes

Stochastic processes are mathematical models for random phenomena in real
life. Whenever in mathematics we want to make a statement about future
behavior of random phenomena, say the development of a stock index or
some financial derivative, we need to come up with a model. The model
reflects the way we think of the problem and how it is approached. It is
indeed crucial for our results and we therefore need to be careful in choosing
it. Obviously, the empirical features of real-life phenomena should match the
ones given by a particular process, and therefore choosing the right model
is a science of its own—mno perfect solution can be expected.

Lévy processes constitutes one of the most important classes of stochas-
tic processes. The stationary independent increments are often among the
properties wanted when modelling and, needless to say, a lot of theory has
been developed. We will start up introducing stochastic processes and Lévy
processes—then move on to present the Lévy—Khintchine representation and
the Lévy—Itd decomposition. These are the backbones for looking deeper
into the main topic of this paper—approximation of small jumps of Lévy
processes. The presentation below closely follows Sato [29].

1.1 Stochastic processes and Lévy processes

Definition 1.1 A family {X; : t > 0} of random variables on R¢ with pa-
rameter t € [0, 00] defined on a common probability space is called a stochas-
tic process.

The parameter ¢ is usually taken for time. The class of stochastic processes
is very large and contains many interesting subclasses. One of them is the
class of Lévy processes—stochastic processes with stationary independent
increments as stated precisely in

Definition 1.2 A stochastic process {X; : t > 0} on R? is called a Lévy
process if the following conditions are satisfied

1. Xg=0 a.s.

2. Foralln > 1 and all0 = tg < t1 < --- < t, the random wvariables
Xo, Xe, — Xo, Xty — Xtyy -+, Xy, — X4, are independent.

3. The distribution of Xsy1+ — X does not depend on s.
4. It is stochastically continuous.

5. There is Qo € F with P[Qo] = 1 such that, for every w € Qp, X¢(w) is
right-continuous in t > 0 and has left limits in t > 0.

Condition 2 is called the independent increments property and condition 3
is the stationary increments property. We define an additive process as a



stochastic process satisfying the conditions 1, 2, 4 and 5. Notice that under
conditions 2 and 3, condition 4 can be replaced by

lim PlIX;| > €] =0, €>0. (1.1)

Moreover we call a process satisfying 1-4 a Lévy process in law. Any Lévy
process in law has a cadlag version and thus satisfies all the above conditions
1-5—a proof of this non-trivial result can be found in Sato [29] chapter 2,
together with a similar result on additive processes in law.

Because of the stationary independent increments we can think of Lévy
processes as random walks in continuous time. The class of Lévy processes
contains well known processes such as the Brownian motion and the Poisson
process. The Brownian motion is used for modelling continuous random
motions and the Poisson process for jumping random motions. These two
processes are essential to the class of Lévy processes, as will become evident
later. Other examples of Lévy processes are stable processes (which include
the Cauchy process) and the Gamma process.

1.2 Characteristic functions

For analyzing the distribution of a Lévy process, the characteristic functions
are lending us a hand. Many calculations and representations can be done
much easier using this transform.

First we need to define the inner product on R%. Let the column vectors
x = (2j)j=1,..4 and y = (y;)j=1,.. 4 be elements in R?. The inner product is
then defined as (z,y) = E;-lzl x;y;. The definition of characteristic functions
is now as follows

Definition 1.3 The characteristic function [i(z) of a probability measure p
on R? is

fi(z) = / @ y(da), zeRY (1.2)
R4

The characteristic function of the distribution Px of a random variable X
on R? is denoted by Px(z). That is

Px(z) = /]R ) 37 Py (dz) = B[e!X)]. (1.3)

Characteristic functions have many nice properties. Though we will be
using many of the properties, we will only list the most important from the
perspective of this paper. Write p1 % ug for the convolution of the finite
measures 1 and po and denote the n-fold convolution of p by p” = p™*.

Proposition 1.4 Let p, pu, po be distributions on RE. If = py * po, then
i(z) = p1(2)p2(2). If X1 and Xs are independent random variables on R,
then PX1+X2 (Z) = PX1 (Z)PX2 (Z)



A proof of this property (and others) of the characteristic functions can
be found at many places in the literature—see e.g. Sato [29] for relevant
references.

Suppose {X; : t > 0} is a Lévy process and let for t > 0, p; denote the
distribution of X+ — X for any s > 0. Note that pg = g, the degenerate
probability distribution at 0. If we write for s,t > 0

Xs+t - Xo = (Xs - XO) + (Xert - XS)a (14)
it is obvious that

Hstt = Hs * [t (1.5)

This indeed suggests a close relationship between Lévy processes and in-
finitely divisible distributions. First we properly introduce infinitely divisi-
ble distributions.

Definition 1.5 A probability measure i on R? is infinitely divisible' if, for
any positive integer n, there is a probability measure pi, on RY such that
W= -

Developing the above idea further, one can easily show that for any Lévy
process X on R?, the distribution of X} is infinitely divisible for any t—e.g.
let ¢t = %, uw= Px, and p, = Pth*th,l' Since

Xy = (X4, — Xo) + -+ (Xp,, — Xo,, 1), (1.6)

we have p = p' because of the stationary independent increments. Con-
versely, it follows from Kolmogorov’s consistency theorem (see Kolmogo-
roff [20] or with this regard Sato [29]) that if x is infinitely divisible, then
there exists a Lévy process X such that X, — X has distribution p; for
any s,t > 0.

Notice, it is only in that case when X is a Lévy process in law, we need the
assumption of stochastic continuity in order to have the link from Lévy pro-
cesses in law to infinitely divisible distributions. In that case, the distribu-
tion of X, is infinitely divisible but not always equal to u! (u1 being the dis-
tribution of X1). E.g. let f(¢) be a function such that f(t)+ f(s) = f(t+s),
t,s > 0 but such that f(t) is not a constant multiple of ¢, and let X; = f(¢).
If ¢ > 0 is irrational, choose rational numbers r,, such that r,, — ¢. X; being
stochastically continuous ensures the desired convergence Py, — Px,.

1.3 The Lévy—Khintchine representation

Now the strong link between Lévy processes and infinitely divisible distri-
butions is about to pay off. The Lévy—Khintchine representation (or Lévy—
Khintchine formula) gives us a representation of characteristic functions of
all infinitely divisible distributions. Let D = {z : |z| < 1}, the closed unit
ball.

'Mathematicians who study algebra would say that the distributions (1¢)t>0 on R?
form a convolution semigroup.




Theorem 1.6 (Sato [29] theorem 8.1) (i) If u is an infinitely divisible
distribution on R, then

Az) = exp {— (e A2) il 2)
+/ (€0 1 Zilz oV p(a))v(de)|, zeRL (1.7)
Rd

where A is a symmetric nonnegative-definite d X d matriz, v is a measure
on R? satisfying

v({0}) =0 and /Rd(|x]2 A Dv(dz) < oo, (1.8)

and v € R,

(ii) The representation of [i(z) in (i) by A, v and ~y is unique.

(iii) Conversely, if A is a symmetric nonnegative-definite d X d matriz, v is a
measure satisfying (1.8), and v € R?, then there exists an infinitely divisible
distribution p whose characteristic function is given by (1.7).

We call (A,v,y) in theorem 1.6 the generating triplet of u. A and v are called,
respectively, the Gaussian covariance matrix and the Lévy measure of p. To
improve our intuition we have a look at the Lévy—Khintchine representation
in one dimension—Ilet X; be a Lévy process, z € R and theorem 1.6 gives
us the representation

Px,(z) = Elexp(izX))]
= exp [t (iaz - % + /OO (e —1— izx1(|x<1))y(dx)>]. (1.9)

—o0
Notice that the right hand side of (1.9) can be written as a product of three
terms. Thus recalling proposition 1.4 we can write X; as the independent
sum X; = at + bWy + J; of a drift term at, a Brownian component bW;
where W is a standard Brownian motion and a (compensated) pure jump
part J; with Lévy measure v. One can think of {J;} as a pure jump process
where jumps of size x occur with intensity v(dz). If v has finite mass
A= [ v(dz) < oo, then {J;} is a compound Poisson process with intensity

A and jump size distribution @. The compensation of {J;} by the last

term in the integral is only done in order to make sure the integral converges.
Thus it is not needed if [ (|z| A 1)v(dz) < oo, i.e. the paths of {J;} are
of finite variation. Since the role of the interval [—1,1] in the centering is
arbitrary, a compensated Lévy process is only given canonically up to a
drift term—a clear presentation of the centering procedure can be found in
Asmussen [3] appendix A3.

The following example shows the Lévy—Khintchine representation in action
for three specific Lévy processes in one dimension.



Example 1.7 Using theorem 1.6 we have for Xt/ being a Brownian motion
in R with drift « € R and variance b > 0

~ . ’ . b222
PX;(Z) = Elexp(izX;)] = exp [t <1az - T)], z € R, (1.10)
and for X;l being a Gamma process? in R with parameters a,b > 0

Py (2) = Elexp(izX;)] = exp [at /0 T 1)

e_%
. dx)}, z€eR, (1.11)

and for X;H being a one-sided strictly %—stable process® in R, with parameter
c>0
ct o0

V27 Jo

The relevant calculations can be found in Sato [29].

P (z) = Elexp(izX; )] = exp [

~ _3
X! (e —1)x 2dx)}, z € R. (1.12)

a-stable random variables are often represented by characteristic functions,
as it is the best analytic way of characterizing all members of this class.
Even though the a-stable laws are absolutely continuous, their densities
(excluding a few exceptions) can only be expressed by complicated special
functions—see Zolotarev [33].

1.4 The Lévy—Ito decomposition

The Lévy—It6é decomposition gives us a decomposition of sample functions
of additive processes. It expresses a sample function as a sum of two inde-
pendent parts—a continuous part and a (compensated) sum of independent
jumps. Before writing up the theorem we need some preliminary definitions.

Definition 1.8 Let (©,8,p) be a o-finite measure space. A family of 7 -
valued random variables {N(B) : B € B} is called a Poisson random mea-
sure on © with intensity measure p, if the following hold:

1. For every B, N(B) has Poisson distribution with mean p(B).
2. If By,..., By, are disjoint, then N(By),...,N(By,) are independent.
3. For every w, N(-,w) is a measure on ©.
Moreover write
Dap = D(a,b]={zecR?:a<|z|<b} for 0 <a<b< oo,

Dyoso = D(a,00)={zecR:a < |z| < o0} for 0 <a < oo,
H = (0,00) x (R'\{0}) = (0,00) x Do,cc.

We are now ready to formulate the Lévy—It6 decomposition.

2Define the Gamma distribution as having density f(z) = ﬁwxa_le_%, 0<z< oo

3Define the one-sided strictly stable distribution of index % (sometimes referred to as
o2

the Lévy distribution) as having density f(z) = \/%e_ﬁx_%, 0<z<oo.




Theorem 1.9 (Sato [29] theorem 19.2) Let {X; : t > 0} be an addi-
tive process on RY defined on a probability space (Q,F,P) with system
of generating triplets {(A¢,vi,7y(t))} and define the measure v on H by
7((0,t] x C) = 14(C) for C € BRY). Using Qq from definition 1.2 of
an additive process, define, for B € B(H),

N(B,w) = { (7)%/:{5 (8, Xs(w) — Xs-(w)) € B} ;Z; Z ; gga (1.13)

Then the following hold

1. {N(B): B € B(H)} is a Poisson random measure on H with intensity
measure U.

2. There is Q1 € F with P[Q] = 1 such that, for any w €

th(w) = lim {xN(d(Sv SU),(A)) - &7;((:1(8, ZL‘))}
€0 J(0,4]x D(e,1)
+/ xN(d(s,z),w) (1.14)
(0,¢] x D(1,00)

is defined for allt € [0,00) and the convergence is uniform in t on any
bounded interval. The process {X}} is an additive process on RY with
{(0,14,0)} as the system of generating triplets.

3. Define
X2 (w) = X¢(w) — X} (w) for we Q. (1.15)

There is Qo € F with P[Qa] = 1 such that, for any w € Qa, X?(w) is
continuous in t. The process {X?} is an additive process on R? with
{(At,0,7(t))} as the system of generating triplets.

4. The two processes {X}'} and {X?} are independent.

We call {X}} and {X?} respectively the jump part and the continuous part
of {X;}. We notice that the first term on the right hand side of (1.14) is
compensated (to having mean 0) in order to have the integral converging—
its limit is called the compensated sum of jumps.

We can use the Lévy—It6 decomposition to write any Lévy jump process {.J; }
as the independent sum J; = Jt(l) + Jt@), where the Lévy measures of {Jt(l)}
and {Jt(z)} are the restrictions v(1), v(2) of v to respectively R*\ D(1, 00) and
D(1,00). Notice that v(?) is finite so {Jt@)} is a compound Poisson process.
The choice of areas (intervals) will often be chosen differently in order to

make as much use of this strong result as possible—e.g. to respectively
R D(e, 00) and D(e, 00).



2 Approximation of small jumps of Lévy processes

Let {X;} be a Lévy process on R. By use of the Lévy—Khintchine repre-
sentation we can write X; as the independent sum X; = at + bWy + J; of
a drift term at, a Brownian component bW; and a compensated pure jump

part J; with Lévy measure v. Then we use the Lévy—Ito decomposition and
write J; as the independent sum J; = t(l) + Jt(2), where the Lévy measures
of {Jt(l)} and {Jt(Q)} are the restrictions v(1), 12 of v to respectively [—¢, ]

and {x : |z| > €}. All together we have
Xy =at + bW, +JY + J@, (2.1)

where all the terms on the right hand side are independent. Hence these
building blocks can be used for simulating any Lévy process. The Brownian
and compound Poisson terms are not that difficult to simulate—but in many
cases v is not finite and we are facing the problem of simulating Jt(l). Recall

from theorem 1.6 that [;(|z|* A 1)v(dz) < oo, thus Jt(l) may have infinitely
many jumps (the case where v is not finite). This means that we cannot

simulate Jt(l) by standard procedures. Thus we have to look at alternatives
for approximating the infinite number of jumps in finite time.
2.1 The normal approximation

One could simply simulate the Lévy process by choosing e “sufficiently”
small in some sense and then neglecting Jt(l), i.e. simulating

X{(t) = at + bW, + J2. (2.2)

But because Jt(l) is in general not of finite variation this could be a bad

idea—Jt(l) can behave in a manner which is crucial for the process. Also
remember that a compensated Lévy process is only given canonically up to
a drift term (a changes with the compensation).

An improvement could be achieved by assuming that the error

Xe(t) = X (1) — Xi(t) (2.3)

made in (2.2) is approximately normal. This would mean incorporating the
variation of the small jumps

X5(t) = at + /B2 + o2 (W] + J2, (2.4)

where W} is a version of W, and independent of Jt(Q),

o2(e) = 22v(dx). 2.5
(© /| (dz) (2.5)

We notice a Brownian term appearing even when the original process X does
not have one (b = 0). This approximation has been suggested on intuitive
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grounds in some particular cases by Bondesson [8] and Rydberg [27]. As-
mussen and Rosinski [4] have looked deeper into this subject and presented
a theorem stating when the functional CLT underlying (2.4) is valid.

We notice that the approximation error X (¢) given by (2.3) is a Lévy process
with E[X(t)] = 0 (use appropriate compensation) and Var[X.(1)] = o2(e)
(given by (2.5)).

Theorem 2.1 (Asmussen and Rosinski [4] theorem 2.1)

;((2) BW ase—0 if and only if for each K > 0

o(ko(e) Ne) ~ ofe), as € — 0. (2.6)

The weak convergence of o(e) ! X, to a standard Brownian motion is in the
Skorokhod space D|0, 1], the space of right continuous paths with left limits
(cadlag paths), i.e. see Billingsley [7]. We also have an intuitive condition
for the validity of (2.6).

Proposition 2.2 (Asmussen and Rosinski [4] proposition 2.2)
Condition (2.6) is implied by

lim ie) = 0. (2.7)
e—0 €
Moreover, if v does not have atoms in some neighborhood of the origin, then
(2.6) and (2.7) are equivalent.

That is, the normal approximation always holds when the standard deviation
of the small jump part of a Lévy process converges to zero slower than the
level of truncation. Asmussen and Rosiniski [4] also give an example that
shows (2.6) and (2.7) are not equivalent in general.

In order to decide which processes do or do not admit the normal approxi-
mation, we have a look at the processes from example 1.7. The Brownian
motion does not have any jumps, so there is no use for the approximation
in this case. Another case that does not need the approximation either is
the compound Poisson process, because v is finite, and hence, X has only
finitely many jumps in any finite time interval.

Example 2.3 For the compound Poisson process v has the form \v/, where
A is the intensity of jumps and v/ is the jump size distribution. That is,
around 0, v(x) is of order z*, k > —1. We have

1 1
1/ [¢ 1/ e 2
ol _ _(/ x2u(d1:)> :—(/ xkada:)
€ € 0 € 0
1/ 1 N 1/ 1 2
_ 1 3+k 1 3+k
- e(S—i—k[m }0) e(3—|—k€ )

3 (3+k)

ST

1
i+

=€ —0, ase—0, k> —1. (2.8)

€

11



So o(€) = o(e) and therefore (2.6) fails!

Example 2.4 For the one-sided strictly %—stable process we have
v(de) = —£ 2~ 2dz. And therefore

V2r
o?(e) = Var(Xe(l))—/xKerV(dx)— \/%/0 z3dz
- 3\2/027{ 24] —32\/—02763 (2.9)

3

and o(e) =,/ 3\% €1. Notice that v does not have any atoms and therefore

by proposition 2.2 the normal approximation holds. Generally the normal
approximation holds for any stable process with a € (0,2) (see (3.11)).

P
e b

Example 2.5 For the Gamma process v(dz) = A%

dz. This gives
o?(e) = Var(X.(1)) :/| z?v(dx) :)\/O re b dx
x|<e

€ .’L'2 € A 5
~ )\/O mdx—A[7]0—§e (2.10)

and o(€) ~ e\/g . Again v does not have any atoms and therefore by propo-
sition 2.2 the normal approximation does not hold.

But indeed in some sense the normal approximation is not ‘far’ away in the
Gamma case. The standard deviation of the small jump part is proportional
to € and what we needed was € to a power of k < 1. To know how ‘far’ away
the normal approximation is—is it still good or should we not be using
it—we investigate the actual distribution. Take a look at the logarithm of
the moment generating function (the cumulant generating function), read

exp G%)] _ /0 <e_ - ?) v(dz)

e =o(e)

logE

and make a series expansion of the exponential function

€A x a2 st s2x? S
2.11) = Zl1-2+ = +0@) )1+ =
(2.11) /0 :z:[( T (= ))< * +2 +7;n!a”>

€

X 3:'2 ST 51’2 8@'3 S.%A
IR Oy — 3% 4387 5% o d
+3 =g 0@ oo Vo w2 (ae ﬂ v
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“x[s222 223 s2at r 22 e s"z"
[ 2 _ - d
/0 x| 202 202 * 402b? + < b 262) 7;3 n!a?} v

+o(1)
€ -82$ .%'2 Sn:cn—l
= A — 1—-—+— d 1
/0 202 ( b +2b2>z nlom } z+o(l)
s2x2qe s qe s2e? s"e™
= M Tzt X lamesls) = Mz !
< 402 o+g nlno™lo 402 Zn‘na? (1)
2 n, n 2 n
s s"e s
= — 4+ o(l) = — — +o(1). (2.12)
2 = nlno? 2 inn(3)>

The first term is recognized as the cumulant generating function for a nor-
mally distributed random variable. The second term is a series that only
contributes with one nonzero term when calculating cumulants, and that
is only for cumulants higher than the second. As we excepted, the normal
approximation is ‘close’, and the two first moments actually coincide with
those from a normally distributed random variable. By simulating different
Gamma processes we will see how well the approximation works for different
parameters—see section 3.7.

3 Simulation

In order to preserve our intuition when interpreting the simulations we will
focus on the one dimensional case. Recall (2.1) which says that any Lévy
process can be written as the independent sum of a drift term at, a Brownian
component bW; and a (compensated) pure jump part J; = Jt(l) + Jt(2) with
Lévy measure v. The Lévy measures of Jt(l) and Jt@) are the restrictions
v 1) of v to respectively [—¢, €] and {z : |z| > €}. The increments of the
Brownian motion are stationary, independent and normally distributed—
this makes simulation of a sample path along a discrete skeleton straightfor-
ward. Jt(Q) is a compound Poisson process with finite intensity A = [ v(dy)
and jump size distribution @. Simulation of a sample path is fairly sim-
ple since the “waiting times” between jumps are exponentially distributed,
thus problems only occur if the jump size distribution is hard to simulate.
All we are left with is Jt(l)—the small jumps. If v is not finite then Jt(l) has
infinitely many jumps, and therefore we need to truncate or perform some
limiting procedure.

3.1 Series representation

The (compensated) process J; of jumps is described by the Lévy measure
v and the Poisson random measure IV, recall (1.13) and (1.14). From theo-

13



rem 1.9 we know that

Ji(w) = lim {zN(d(s,x),w) —zv(d(s,z))}
=0 /(0,4 x D(e,1)
+/ N (d(s,z),w), (3.1)
(0,6]x D(1,00)

and for n € N we then define the limiting jump process

Toa(w) = / {xN(d(s, 2),w) — 25(d(5,))}
(0,]x D(L,1]

—i—/ zN(d(s, z),w). (3.2)
(0,¢]x D(1,00)

Notice that the limiting jump process is compound Poisson and by use of

the order statistics property write it as (2 refers to identity of the finite
dimensional distributions)

In,t 2 Z (Jil(Uigt) — thy) , (3.3)
€Ay,

where A, = {i > 1:[JY > 1} J% are the jump sizes, U; are i.i.d. uniform
on [0,1] and b, = f(o 4% D( 1] xzv(d(s,x)). Thus in the limit we have

Jl]. U:;<t) — tbn — Jt a.s. (34)
(Uit)
€A,

as n — oo. This is almost a series representation—all there is left to do is
to define an order of summation. Basically a series representation can be
written as

o0

Jo=Y_ (Jw<p —tai) s (3.5)

=1

for suitable centering constants c¢;. There are many ways of building such
series, see the article of Rosinski [26] and Samorodnitsky and Taqqu [28] for
the special case of stable processes. The following example (corollary 1.4.3
from Samorodnitsky and Taqqu [28]) shows how a series representation for
a stable random variable could look like.

Example 3.1 Let {e1,¢e9,...}, {Wi,Wa,...}, {I'1,T'2,...} be three inde-

pendent series of random variables. €1,€9,... is an i.i.d. sequence of Rade-
macher? variables, Wy, W, ... is an i.i.d. sequence of random variables with
a finite absolute ath moment and I'1, "o, ... is a sequence of arrival times of

4Define the Rademacher variables as

I 1 with probability %,
"7 | -1 with probability 1.
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a Poisson process with unit arrival rate A = 1. Any random variable having
the symmetric stable distribution S4(0,0,0), 0 < a < 2 (see section 3.4 for
an explanation of the parameters) has the a.s. series representation

<E|W1|a> Zelf W (3.6)

where
o0 —1 11—« - - 1,
C, = </0 e sin(a:)dx) = { E(Q—a) cos(73) Zf Oé;f (3.7)

The representation from example 3.1 is for a symmetric stable distribution—
see theorem 3.2 for a representation of the skewed and translated stable.
Notice, that (3.6) converges absolutely for a < 1. Thus we would expect
much faster convergence for o < 1 than for o > 1.

The connection between the series representation of a random variable and
the series representation of a stochastic process is given by Rosinski [26]. We
can use example 3.1 to illustrate this. Let the stable random variable X be
given a.s. by the series representation (3.6). Rosinski then uses a sequence
{U1,Us, ...} to transform the random variable into a stochastic process on
[0,1]. Let our sequence {Uy, Uy, ...} replace the sequence {W7, Wa, ...} and
for our stable random variable X we then have

X(t)=o0 <E|W1|a> ZEZ Lw<ty, a.s. (3.8)

This may seem straightforward but it requires quite some work to achieve
the important fact, that the series (3.8) converges a.s. uniformly on [0, 1].
A series representation could be used for generating/simulating a Lévy jump
process. It is of course not possible to sum infinitely many terms and
inevitably we need to truncate to a finite number of terms. Since a se-
ries representation is not unique, we need to be aware of the error when
truncating—there could be differences according to which distributions and
representations that are being used, i.e. the speed of convergence varies
with the type of distribution and representation. Also notice, that when
truncating a representation of the same type as (3.6) we leave all the small
jumps out of account! So actually this method can be compared with the
method of just simulating the compound Poisson process Jt(z).

Note the completely different approach for simulating a process by the series
approximation, contrary to the well known method of the i.i.d. increments.
That is, we normally make use of the increment distribution and build up
the process by iterating forward on a mesh. But this cannot by done for
any Lévy process, because in general we do not know the distribution of the
increments.
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3.2 The normal approximation in simulation

We now want to test how the normal approximation from theorem 2.1 works
in practice. As always it is hard to get results for a sample path Ji(w),
t € [0, 1], so we will be looking at a fixed time, say ¢ = 1. By doing this we
also take advantage of being able to simulate J; directly—i.e. the distribu-
tion of a stable random variable can be simulated precisely (see Chambers,
Mallows and Stuck [9] and Nolan [24]), but generation of a sample path is
still only done by a limiting procedure. We will later (in section 4) take a
closer look at the quality of the pathwise approximation, and for now be-
lieve, that the paths of our simulation are close to the real path (w-wise)
whenever they are close at the end of the interval [0, 1].

Quantiles are very useful when doing Q-Q plots, and for the stable distribu-
tion they can be approximated by a program® developed by Nolan. When
looking at heavy tailed distributions, we need a lot of points in order to
produce useful Q-Q plots. The tails are highly unpredictable, so we should
definitely be cautious and not pay too much attention to the far out tails.
We will try to overcome this problem a bit by choosing to simulate a very
high number of variables. Furthermore we will also have a look at both the
theoretical and simulated residuals.

It would be nice to compare a (truncated) series X ¢ of the form (3.5) to the
corresponding “real” random variable X. But in order to do so by simu-
lation, we need to be able to generate both random variables for the same
w—which is impossible. The idea is now to simulate a large number, say K,
of truncated series X€ of the form (3.5), and then test different truncation
levels € against the “real” distribution—i.e. by calculating residuals and
doing Q-Q plots. If we are able to get close enough to the real distribution,
we will assume the truncated random variable X has got the right (real)
distribution. We can then easily get random variables for the same w just
by noting the value of X ¢ € > e at a lower summation level, corresponding
to a higher truncation level.

As stated earlier, truncating a representation of the same type as (3.6) can
be compared to simulating the compound Poisson process Jt(Q). Recall from
section 1.3, that the compound Poisson process has intensity A = [ v(dz)
and jump size distribution @. But the method of simulating a compound
Poisson process, cannot be used in this situation, because (as before) we
need to have both variables for the same w.

3.3 Preparing for simulation

We will look at three different Lévy processes at time t = 1, i.e. three
different distributions: stable, gamma and our own example made for the
occasion. First we find the intensity A, for (the compound Poisson process)

Jt(Q) and the quadratic variation of the small jumps o, for all three Lévy

®The program is called STABLE and can by downloaded from Nolan’s homepage
http://academic2.american.edu/™ jpnolan/home.html.
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measures. We need ¢ if we want to use the method of simulating a com-
pound Poisson process—here it is mostly stated in order to have a clue of
the actual intensity. We will use o, when we later want to make use of the
normal approximation. This can be done by simulating to a certain lower
level of the series than we would normally do, and then adding an indepen-
dent normally distributed random variable with the right variance given by
o2—according to theorem 2.1, this is the asymptotic variance of X.(1).
For the stable and gamma distributions we explicitly know a series repre-
sentation, but for our own example we need to use a general result in order
to get a representation. For this we will be using the inverse Lévy measure
method by Khintchine [19], Ferguson and Klass [12]—this method and sev-
eral others are clearly described and exemplified by Rosinski [26].

The stable process where X (1) has a stable distribution S, (o, 3,0)¢ with a
Lévy measure of the form

C1

l/(diL‘) = x1+04 (x>0)dx + | ’1+a1(x<0)d (39)

where ¢;1 > 0, co > 0, ¢1 + ¢c2 > 0 and ¢y, co depend on ¢ and 3. We now
find

¢ ey *
= 0= [ et [ s
co o c1 o Co cl c1+ ¢

— S — = —-—— _— = 3.10

[(—a)xaL * [(—a)x“] e * e e (810)
and

m

2 . © 5 o ‘2
o = /_ESL‘ l/(d:L'):/_E:E z 1+ad:n+/ xHadaj

cox? ™ €+ crr—e]e _ c1+02€2_a.
2—« 2—a |, 2—«

(3.11)
0

The calculations for the other two are similar and we find for the gamma
process (see also example 2.5)

v(de) = a%dx a,b>0, x>0 (3.12)
Ae = a/ dz (3.13)
e T
2 _e
o = ab (b —(e+b)e b) (3.14)

SThis parameterization is the one used by Samorodnitsky and Taqqu [28]. It is now
the most used in the literature even though the characteristic function is not jointly
continuous in all four parameters. There are quite a few different parameterizations of
the stable distribution that deal with this problem and further more give a more intuitive
meaning to the parameters—these are explained in Nolan [23]. See also Zolotarev [32].
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and for our own example

1 o log”(2)
v(de) = ﬂl(kxd)dx%—Tl(le)dx, x>0 (3.15)
2_9 oo —log?(z)
A= —\ﬁ+/ SR P (3.16)
Ve 1 Zr
2 2
ol = ge\/g (3.17)

Notice, that the remaining integrals have to be solved numerically.

3.4 Simulating stable

For the stable distribution S, (o, 3, ) we do not explicitly know the two
constants from the Lévy measure ¢; and co—if needed, the connection to
the parameters can be calculated (not very pleasant) or estimated by simu-
lation. We do know, that the process has no positive (respectively, no neg-
ative) jumps when ¢; = 0 (respectively, co = 0). 3 € [—1,1] is a skewness
parameter and we know the relation 8 = (¢; —c¢2)/(c1+¢2). In order to keep
things simple and restrict the number of simulations we will only look at the
symmetric case, i.e. 0 = 0 and thus ¢; = ¢o. Our results from simulating
the symmetric case will also be usable for the skewed case—comments on
this matter will be made at the end of section 3.5. The parameter o > 0is a
scale parameter and is also determined by ¢; and co—we choose 0 = 1. The
last parameter in the triplet, u, is a translation parameter and we choose
@ = 0. The index o € (0,2) is the most significant parameter. Roughly
speaking, a stable process moves mainly by big jumps if « is close to 0, and
mainly by small jumps if « is close to 2. By looking at the simulation results
in Clausen [10] we see a clear picture of the computational effort required to
have (3.6) converging. The convergence becomes significantly slower for a’s
growing and especially for o > 1 it gets very slow—for a’s near 2 it might be
impossible to get the series converging within a reasonable simulation time.
With that in mind we choose the two values a = 0.75 and a = 1.5, and will
have a look at both.

Our first concern is how many variables to generate in order to get a rea-
sonable Q-Q plot for the stable distribution. This can be examined by
simulating stable random variables by the method of Chambers, Mallows
and Stuck [9], and then doing Q-Q plots against the real quantiles. This
generation method is naturally much faster than summing in a series rep-
resentation. As mentioned previously, we will use the STABLE program
by Nolan to approximate’ the real quantiles. When doing Q-Q plots with
non-heavy tailed distributions we normally consider 5,000 observations to be
enough to ensure a perfect Q-Q plot, but obviously this is far from enough for

"The program STABLE has a preset precision (relative error) when calculating quan-
tiles. The relative error is 0.12 - 1072 and all our calculations will be done with this
precision.

18



heavy tailed distributions. On the other hand we need to keep the number
of variables to a level where we will be able to do our later simulations of the
series representation. We will be using S-PLUS® for simulation of these sta-
ble random variables (S-PLUS uses the method of Chambers, Mallows and
Stuck). Repeated runs indicate that an amount of 1 mill. random variables
is adequate for our purpose—the runs still differ in the tails at this level,
but we will take this into account when looking at the plots. Two runs are
depicted in figure 3.1—it shows the full Q-Q plot and two more Q-Q plots of
the same plot with truncated axes. Notice that, when truncating at +5 mill.
and 50,000 this corresponds to truncating at respectively the 3.5 - 10~°th.
and the 1.0 - 10~%th. fractile on the negative side and equivalent values on
the positive side—this leaves respectively about 6 and 250 observations out
of account. When looking at the Q-Q plots we notice a systematic deviation
in the plot truncated at 50,000. It looks as if the stable random variables
generated by the method of Chambers, Mallows and Stuck has got a bit
lighter tails than they should have! A further research by doing several runs
show the same picture, but with both lighter, heavier and the combination
of the two at either tail. This indicates, that either the Chambers, Mallows
and Stuck method is not “perfect” due to numerical problems, though the
method is exact, or the built-in random number generator in S-PLUS leaves
room for improvement. Actually the S-PLUS random number generator
fails several statistical tests—see McCullough [21].

We now turn to simulating stable random variables by the series represen-
tation (see example 3.1). We recall, that the idea is to simulate 1 mill.
truncated series X€(1) of the form (3.6), and then test different truncation
levels € against the “real” distribution (for ease we choose W; iid. uniform).
This could be done in S-PLUS, but we would definitely want to avoid this
because of the questionable random number generator and the extensive
running time. S-PLUS is known to be very slow when doing loops?, and
thus we take an alternative approach by programming the simulation from
scratch in the programming language Delphil®. We avoid using Delphi’s
build in random number generator (linear congruential—optimized only for
speed) and instead we will use an assembler optimized version of an algo-
rithm called ISAAC!—see Flannery et. al. [18] for more information on

8S-PLUS is a statistical analysis program by Insightful (former MathSoft)—see
http://www.splus.com for more information.

9S-PLUS does not release memory after doing each loop and unfortunately (for our
purpose) it keeps testing if it can be released. This tedious procedure makes loops not
only very slow, but also has the side effect of increasing the running time to worse than
linear.

Delphi is a programming language by Borland and is often referred to as Object Pascal.
The speed is comparable to C++. See http://www.borland.com for more information.

"ISAAC (Indirection, Shift, Accumulate, Add, and Count) is a random number gener-
ator developed by Robert J. Jenkins Jr. There are no cycles in ISAAC shorter than 24°
(i.e. no bad seeds) values and the expected cycle length is 2525 values. No bias has been
detected in this algorithm (contrary to the linear congruential generators) and it passes
all the regular statistical tests for random number generators, including DIEHARD. More
information on ISAAC can be found at http://burtleburtle.net/bob/rand/isaac.html.
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QQplot of S-PLUS generated stable, alpha 0.75 QQplot of S-PLUS generated stable, alpha 0.75
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Figure 3.1: Two separate simulations (one in each column) of 1 mill. stable
random variables with o = 0.75 in S-PLUS with the built-in rstab function.
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random number generators. We know, that we should get a simulation of
better quality from our own program with the ISAAC generator, and we
presume that it is also much faster. We have done a test by running the
S-PLUS code by Clausen [10] and our program with the same parameters on
the same computer (a 850Mhz P-IIT). The test generates 100 independent
stable random variables with index 0.75 by summing 50,000 terms in the
series representation for each variable. The running time for the Clausen
program was 65 minutes and for our program 5 seconds—thus our program
is 780 times faster! This certainly tells us to avoid S-PLUS when doing very
large simulations.

We now want to determine the level, say N, of terms we need to sum in
the series representation in order to assume our variable has got the “real”
distribution. This can be done by looking at the theoretical variance of the
residuals, i.e. the variance of the sum of terms from N 41 to N in the series
representation (the mean is of course 0). In the following we will make use
of Stirling’s formula

(i) = V2t~ 2e” q(i), i >0, (3.18)

where 1 < ¢(7) < e, and the following moments of the Gamma distributed
variable

E (F;%> = /OOO x_gﬁ:ﬁ_le_wdx = P(;f:)%) (3.19)

for approximating the theoretical variance of the residuals. We follow the
same idea as used in Clausen [10] and have

N ) N L2 N L\2
S el Wi = E< > z-:iI‘Z-_aWi) - (E > eiFi_EWi>

i=N+1 i=N+1 i=N+1
N j—1
= E( Z Z eie;(T3T;)~ WW)
j=N+
N 2
E< 3 (ainWZ)> 0
i=N+1
N 2 1 N I(i—2)
_ E(Fia>E(WZ2) - _a
2 52T
N _ayim2-4 (i-2) )
_ 1 3 Var(i—2)"a e\ (i - 2)
3z:N+1 \/%Zl 2e7q(4)
N i—1 _2
1 2 2 2 a 9
<52 (a) () e
i=N+1
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Figure 3.2: Variance of the residuals X375 (N = o0) for our two values of
a in the case of stable (beware of the highly different axes).

~ —2—, (3.20)
3 a —
and therefore
Co \* & 1
T (¢4 “a
Var(X3%;) = Var J<E|Wl|a> Y el WZ]
i=N+1
o? Co o NI-% - N1-2
At A — . (3.21)
(6%
If we let N — oo we have
o2 C o leg
Var (X}5,) ~ T <E|I/Val|°‘> 7 (3.22)
(7

For computational reasons we choose W; as iid uniform(0,1), as it is the
fastest to generate. We can set the levels of N for our two choices of «, and
in order to clearly see the dependence on IV, we choose to plot X ]r\?soo against
N in figure 3.2. For a = 0.75 the variance quickly gets very small and for
N = 20,000 it is as little as 2.5-10~8. This is negligible and we can definitely
assume our variables to have the stable distribution when summing 20,000
terms in the series representation. The picture is somewhat different for
a = 1.5, as the variances are much bigger. We do not have the same kind of
convergence and will just choose the highest possible number which can be
simulated in a reasonable amount of time. By running a couple of tests with
our program, we can see that N = 500,000 is by far the highest value we
can consider—we need to run the program several times, so larger values of
N are not an option. For our value of N = 500, 000 the variance is 7.8-1073.
On our 850Mhz P-III this simulation would take just over 6 days, so we will
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stable, a = 0.75 stable, « = 1.5

M | Var (X }\ff‘ N) Var (X f\?foo) M | Var (X R/eﬁ N) Var (X }"\?foo)
10| 8.0-1073 8.0-1073 100 | 1.3-107! 1.3-107¢
25| 1.7-1073 1.7-1073 1,000 | 5.4-1072 6.2-1072

100 | 1.7-107% 1.7-1074 10,000 | 2.1-1072 2.9.1072
500 | 1.2-107° 1.2-107° || 100,000 | 5.5-1073 1.3-1072
5,000 | 2.3-1077 2.5-1077 || 250,000 | 2.0-1073 9.8-1073

Table 3.1: Theoretical variance of the residuals at the levels M < N. For the
two values of a = 0.75 and a = 1.5, N is respectively 20,000 and 500,000.

be lending a few faster computers for this.

The next step is to choose the levels M < N for which the current value
of the sum in the series representation is noted. These levels need to be
considerably lower, as we expect the normal approximation to do a good
job for us. We do not have a clue of how these levels should be chosen, as
this is one of the reasons for doing this thesis. By looking at the theoretical
variance of the residuals at some lower levels M < N and doing a few test
runs, we choose 5 values of M and will compare these—see table 3.1.

After several runs of our program with both a’s we compare the runs by
looking at Q-Q plots. The Q-Q plots of the random variables generated by
S-PLUS (the method of Chambers, Mallows and Stuck) showed systematic
deviations in the plot truncated at £50,000—the deviation changed from one
run to another but was clearly systematic. We are of course looking as to
whether this is also the case in our simulations. Some of our simulations also
show some deviations from the straight line through the Q-Q plot, but they
are much smaller than for the ones generated by S-PLUS. The deviations
in our plots do not seem to be systematic and they are not growing bigger
towards the edges of the plot (at least not in the plot with the smallest
truncation) but are rather fluctuating around the straight line. Two runs are
depicted in figure 3.3—it shows the same types of Q-Q plots as in figure 3.1.
The truncation levels for the plots of a = 0.75 in figure 3.3 are chosen to
match those from figure 3.1, i.e. truncation is done at the same fractiles (the
actual fractiles are stated earlier in this section). We will not pay too much
attention to the tails in the Q-Q plots as they are highly fluctuating due to
the heavy tails in the stable distribution—we did not expect them to match
and they certainly do not. All in all we are pleased with our simulations,
as they show good signs of matching the real stable distribution, that is, a
good convergence of the series representation. But we will keep the highly
different variance of the residuals in mind, and watch if they affect the final
outcome when we test the normal approximation.

23



QQplot of simulated truncated stable, alpha 0.75 QQplot of simulated truncated stable, alpha 1.5
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Figure 3.3: Two separate simulations (one in each column) of 1 mill. stable
random variables (truncated series representation)—by our own program.
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3.5 The normal approximation in the case of stable

From example 2.4 we know that the normal approximation holds for the one
sided strictly 3-stable process. Now recall 02 = 942>~ from (3.11)—v
from (3.9) does not have any atoms and therefore by proposition 2.2, the
normal approximation holds. We will now have a closer look at the be-
haviour of the normal approximation in practice.

We previously concluded, that the variance of the residuals (towards infin-
ity) was small enough to assume, that we had a real stable random variable
by summing 20,000 terms in the series representation with @ = 0.75. We
were more skeptical in the case of o = 1.5 as the residuals were much big-
ger. We will now test the normal approximation by doing Q-Q plots (versus
standard Normal) of the difference between summing N terms and sum-
ming M terms, i.e. the residuals X7y We have previously used a different
notation for this difference, which expressed the difference in terms of the
truncation level e—that is, in these terms we would say that the difference
X . ~X—X ¢, € < e between the two dependent random variables should
follow a normal distribution. There is, of course, a unique correspondence
between these two notations and more on this topic will be given at the end
of section 3.6. The main idea is to find out how many terms are needed in
order to make full use of the normal approximation, i.e. by summing M
terms in the series representation and adding a Normal random variable.
The Q-Q plots are depicted in figure 3.4.

The Q-Q plots for the case of @ = 0.75 show how summing additional terms
improves the normal approximation. For M = 10 we easily see that the
residuals are not Normal. The improvements over M = 25 and M = 100
are indeed noticeable, and from M = 500 the residuals are almost indistin-
guishable from the Normal distribution. This is indeed very useful as we
know now, that generating a stable random variable with index o = 0.75
can be done by summing 500 terms in the series representation and adding a
Normal random variable with mean 0 and variance 1.2 - 107°—the variance
of X\, see (3.22). Because the running time of our program is linear, we
are now able to generate a stable random variable (by the method of series
representation) 20,000/500 = 40 times faster.

For a = 1.5 the picture is completely different—all plots are showing residu-
als (X7 ) that are close to Normal. We recall, that the theoretical residuals
(table 3.1) for the case of & = 1.5 are much bigger than the ones for the case
of @ = 0.75, i.e. we know that the convergence of the series representation
for « = 1.5 is much slower. That is, we expect that M should be much
larger in this case in order to have small (and Normal) residuals towards
N = oo (Le. X}F,). By comparison to the case of a = 0.75 we can then
rule out, that the residuals from any M < N to infinity are Normal—we can
only conclude, that our N = 500,000 is not high enough. This means, that
the residuals X% are too big for us to assume, that summing N terms in
the series representation is enough to have a “real” stable random variable.
In order to use the normal approximation in the case of « = 1.5 we could
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QQplot of (N terms - M terms) versus Normal, alpha=0.75 QQpilot of (N terms - M terms) versus Normal, alpha=1.5
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Figure 3.4: Q-Q plots of the difference between summing N terms and
summing M terms in the series representation for stable.
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argue, that we should have the same small variance of residuals (X}7°, ) as
for « = 0.75. We concluded, that for a = 0.75 we needed M = 500 ie.
variance of the residuals X}\}foo around 1.9 - 107°>—some backward calcula-
tions then gives us, that we need M = 4.0-10'5 for o = 1.5 in order to have
residuals X7 of the same order. Obviously, we do not have that kind of
enormous computer power available—actually it would take 8 billion times
the time we used for running the case = 1.5 with N = 500, 000. This also
explains why our Q-Q plots all showed Normal residuals— they were only
showing a tiny residual in terms of the “full” sum.

3.6 Further comments on stable

Here we have only looked at the symmetric stable case, but the normal
approximation is valid for any stable, i.e. also the skewed and translated
stable. If we follow the lines from above and argue, that we should have the
same small variance of residuals (X Moo) for any stable, as for the symmetric
stable with a = 0.75, then we are able to calculate the magnitude of M. We
first state a series representation for any stable random variable, S, (o, 3, 11).

Theorem 3.2 (Samorodnitsky and Taqqu [28] theorem 1.4.5)
The series

i (Fjéwi ~ k) (3.23)

=1

with
0 if 0<a<l,
4% 1) _9 . .
kz(a) _ ) E(W; f”v[,ll"/z(z e 2s.1nacd:v) if a=1,
a—1
(- - )Em ifa>1,
i=1,2,..., converges a.s. to a So(c,3,0) random variable with
o _ E|V[/1‘CY and ,3 _ E|W1\asignWl,
Ca E’W1|a

where Cy, is defined as in (3.6).

We can now use (3.23) to generate any stable random variable, because if
X ~ S4(0,,0) then i+ X ~ S, (o, 3, ). In order to calculate the variance
of the residuals

Xie = Z (F‘EW — ke )) (3.24)
i=N-+1
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in this general case, we need moments of the following type, j > 1

«

L
B[N, " = Bl BB
L k=1 k=1

=E[I} + i _é,

f(Ea) S 5 n

k=1 k=i+1

where FEq, Fo,... is an i.i.d. sequence of standard exponential variables
and I", I are independent. These non-trivial moments can only be found
by numerical integration—see appendix A.l for the distribution of [FZ2 +
FiF;._Z-]. This is very tedious and in practice one would choose an easier
approach. Having the results for the symmetric case in mind, one could run
some simulations and then try to get the same small (empirical) variance
Var (X]r\js N), while making sure the series really converges by trying different
values of M and N. This is the same procedure we will use for simulating
our own example, see section 3.7.

We still need to state the connection between the truncation level e of the
Lévy measure (the notation used in section 2.1) and the number of summed
terms in the series representation. Let us truncate the sum at the Nth
term, and find the corresponding level of e. We will use the symmetric
stable case in order to keep our intuition. We recall the terms of the series
representation from (3.6) and have

> e}

—

N ' Ca ) o 1
€) = 1|0 g, *W;
) # (E\W1|“>

Co _\o /.
O'(E‘Wﬂa) W;

This connection can be used for getting an intuitive idea about the level of
N for fixed € and vice versa, but because of the W;’s we cannot say much
about the actual distribution of N(e). This is a bit disappointing, as this
connection would be very useful for determining the real variance 2 of the
small jump part. Instead we will have to be content with the empirical
variance of the residuals.

3.7 Simulating Gamma

For the Gamma distribution the job will be a lot easier—we know from
Clausen [10] that the series representation for the Gamma case converges
much faster than for the stable, and that the convergence gets slower when
increasing the shape parameter. The Gamma distribution has two parame-
ters, a shape parameter a and a scale parameter b. We choose the two values
a = 10 and a = 500 in order to have one small parameter together with a
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bigger parameter with a slower convergence. In both cases the scale param-
eter is kept fixed at b = 1. We recall from example 2.5, that the Gamma
distribution did not meet the requirements for the normal approximation—
but later in section 2.1 we also saw, that in some sense it was very close
indeed. In this section we will see whether the approximation can be used.
The Gamma distribution is not heavy tailed, so we will save a lot of com-
puter power compared to the case of stable. We consider 5,000 observations
to be enough to determine the distribution completely, so this is the num-
ber of Gamma random variables we will simulate. We will use the same
programming language and the same random number generator as for sta-
ble. Rosiniski [26] has listed several series representations for the Gamma
process and we will use the one based on Bondesson’s idea (obtaining a
Gamma random variable as a shot noise variable, see Bondesson [8]). Sim-
ulation of Gamma processes (and fields) by the inverse Lévy measure, as
will be done with our own example in section 3.9, is treated by Ickstadt and
Wolpert [13]—they focus on computing posterior distributions in nonpara-
metric hierarchical Bayes statistics by extensive use of S-PLUS. A Gamma
process X (t) at time ¢t = 1 can be represented as

o0
Iy
X(1)=> be @ Ej, (3.26)
i=1
where E1, Fo, ... is an i.i.d. sequence of standard exponential random vari-

ables that are independent of T'; (T'; is defined the same way as for the
representation of stable, see example 3.1). We will again use the theoretical
residuals as a measure of what levels of N and M to choose. We assume
b =1 and from Clausen [10] we have

N j—1 —j —q
res 1 24+a
Var(Xi%) = 2 ) Y <1+5> <1+a> +

J=N+2i=N+1

ol (R R o (T I P

1=N+1 i=N+1

As we (will) see in table 3.2, the variances quickly get small and we will
not bother to find the variances as N — oo. This is no surprise, as (3.26)
only has positive terms. When choosing the different levels of M, we will
have the corresponding levels of Var (XﬁSN) from the case of stable (with
a = 0.75) in mind and try to find similar levels.

Some test calculations with different levels of M and N give us an idea of
how big the level of N should be for our two choices of a. For a = 10 we
have a very fast convergence and find N = 1,000 is more than enough (e.g.
Var (X%00.1.100) = 6.915-1077 and Var (X[%g0.5,000) = 6.916-1077). Simi-
larly we find that N = 10,000 is enough for the case a = 500. We have plot-
ted the two simulations of the truncated series representation in figure 3.5.
As we expected (from the negligible variances in table 3.2), the Q-Q plots
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Gamma, a = 10 Gamma, a = 500
M Var(XfVe[SN) M Var(X]r\/e[SN)

40 | 2.3-1072 | 3,000 | 2.0-1072
60 | 7.8-107* | 4,000 | 4.9-1074
80| 2.5-107° | 5000 | 1.1-107°
100 | 7.4-1077 || 6,000 | 2.4-1077

Table 3.2: Theoretical variance of the residuals at the levels M < N. For
the two values of @ = 10 and a = 500 N is respectively 1,000 and 10,000.

QQplot of simulated truncated Gamma, a=10 QQplot of simulated truncated Gamma, a=500
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Figure 3.5: Two separate simulations of 5,000 Gamma random variables
(truncated series representation)—by our own program.

show distributions that are almost indistinguishable from the Gamma, and
therefore our simulations have a very good match to the Gamma distribu-
tion. Thus we can assume that we have a Gamma distributed variable by
summing respectively N = 1,000 and N = 10,000 terms in the series rep-
resentation for our two different parameters (¢ = 10, a = 500). This also
means, that we have optimal conditions for determining whether the normal
approximation is a useful tool in the Gamma case, even though the Gamma
distribution did not meet the requirements of the normal approximation.

3.8 The normal approximation in the case of Gamma

We have, as for the case of stable, plotted the differences between summing
N terms and summing M terms, i.e. the residuals X7y, against the corre-
sponding Normal quantiles. The Q-Q plots are depictéd in figure 3.6.

All the residuals are strictly positive due to the series representation (3.26)
only consisting of strictly positive terms. Theoretically this does not match
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QQplot of (N terms - M terms) versus Normal, a=10 QQplot of (N terms - M terms) versus Normal, a=500
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Figure 3.6: Q-Q plots of the difference between summing N terms and
summing M terms in the series representation for Gamma.
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the properties of the Normal distribution, but in practice we could still have
a good approximation, because of the light tails of the Normal distribution.
None of the Q-Q plots shows residuals that are Normal, and neither of our
two parameters are showing improvement to a Normal behavior when we in-
crease M. Even though the values get smaller and smaller when increasing
M, the shape of the Q-Q plots is still kept. It is now obvious, that the normal
approximation is not a good tool in the Gamma case—even though we saw
in section 2.1, that the residuals and the Normal distribution had the first
two moments in common. When compared to the Normal distribution, the
simulated distributions have lighter tails at the lower end and heavier tails
at the upper end of the distribution. The larger parameter (a = 500) has
a shape closer to Normal than the smaller parameter (a = 10). Intuitively,
this is because the Gamma distribution approaches the Normal distribution
when the shape parameter increases.

Even though the Normal approximation is not a good tool in the Gamma
case, we can still use the series representation in this case—the convergence
of the series representation is quite fast and due to the Gamma distribution
not being heavy tailed, we often do not need to generate a lot of random
variables when simulating this distribution. For reference we state, that our
program generated the 5,000 ‘Gamma’ random variables (summing 10,000
terms in the series representation for each variable) in about half a minute.

3.9 Simulating our own example

The last of our three Lévy processes from section 3.3 is our own example.
The distribution of X (1) is not well known, as for the previous two processes,
and we have only specified the process by its Lévy measure (3.15). This
means, that we will have to use a general result in order to obtain a series
representation. As mentioned in section 3.3, we will be using the inverse
Lévy measure method (see section 3.3 for references). We recall, that v
from (3.15) does not have any atoms, and by proposition 2.2 the Normal
approximation holds.

We define the generalized inverse of the tail of v by

v (u) =inf{x > 0: v(z,0]) <u}, u>0, (3.28)

and Rosinski [26] gives us the series representation

e}

o= v ()l as., telo1], (3.29)
=1

where I'; and U; are defined the same way as in section 3.1. Define the

log (u)

modified exponential integral E, 2 . (z) = foo (o1} du, and we have

1 00 log* (u)
droc) = [ ey [T S
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T

Vu
1

1
1
= [ ] 1(z<1) + Elogz,l(max{x7 1})
2 <—x — 1> Liz<t) + Elong(maX{z, 1}). (3.30)

The inverse of z = 2 (% - 1> isy=1/(%+ 1)27 and thus the (generalized)

inverse of v is

1(y>Elog2,1(1)) —1

2
<y7E10g2’1(1) )2 log?,1
2

v (y) = (y)l(ygElogQ’l(l))- (3.31)

+1

By inserting (3.31) in (3.29) we end up with our a.s. series representation
of Ji, t € [0, 1]

o0 1
_ (Fi>Elog2,1(1)) —1
Jt_; (Fz——Elogz,1<1>+1)2+E1°g2’1m) Lrisme ) | Lwiso- (3:32)
= B E—

The obvious difficulty in the series representation (3.32) is to calculate the
inverse of our modified exponential integral. Not only will we need to ap-
proximate the integral by numerical integration, but we also need to ap-
proximate in order to find its inverse. This is very time consuming, and
luckily, the number of times it needs to be done is indeed very limited for
the generation of each random variable—notice E, .2 ; (1) ~ 0.89.

As for the previous two processes, we will only look at time ¢ = 1. We will
again use the same programming language and the same random number
generator as for stable. The integral approximation is programmed using
Simpson’s rule—see e.g. [1].

In this general case we do not assume anything about the simulation levels
in advance. We start out by simulating J; from (3.32) with different lev-
els of truncation N, and noting the values for different (much lower) levels
M < N. We will try to get similar variances of the residuals, as for the
case of stable random variables with o = 0.75, see table 3.1. Our previous
results show, that it would be wise to choose the largest value of M to be
ten times smaller than N—by Q-Q plotting the residuals against the nor-
mal distribution, we can then see how large we need N, in order to have
normal residuals. This can be done with a fairly small set of generated vari-
ables, but we still need an idea of how many variables to generate. This,
of course, depends on whether the distribution of Jj is heavy tailed or not.
There are many degrees of heaviness, and by doing Q-Q plots against dif-
ferent known distributions with different amounts of variables, we are able
to have an idea about the heaviness of the tail. In figure 3.7 we have Q-Q
plotted 5,000 variables against the corresponding exponential quantiles—a
solid (auxiliary) line with slope 2 is also drawn in the figure. The figure
shows, that the heaviness of the tail of J; is comparable to the tail of the
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QQplot of simulated variables (our own example)
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Figure 3.7: Q-Q plot of our own example against standard exponential.

M | E(Xj7y) | Var(Xj7y)

1039-107' | 2.1-1072
251 1.6-107Y | 1.4-1073
100 | 4.0-1072 | 2.2-107°
500 | 7.9-107% | 1.7-1077
5,000 | 7.2-107* | 1.7-10710

Table 3.3: Empirical mean and variance of the residuals at the levels M < N.
The value of NV is 50,000.

exponential distribution. Thus, generating 5,000 variables should be enough
for this distribution.

In table 3.3 the empirical mean and variance of the residuals for our 5 chosen
levels of M are shown (for 5,000 variables). When we compare the levels in
table 3.3 with our two previous processes, we are convinced, that the dis-
tribution is well approximated at N = 50,000 to assume we have the right
distribution. Therefore we choose N = 50, 000.

3.10 The normal approximation for our own example

We have again plotted the differences between summing N terms and sum-
ming M terms in the series representation, i.e. the residuals X;7°,;, against
the corresponding Normal quantiles. The Q-Q plots are depicyted in fig-
ure 3.8.

All the residuals are (as for the case of Gamma) strictly positive due to the
series representation (3.32) only consisting of strictly positive terms. We
see, that summing more terms in the series representation gives a better fit
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Figure 3.8: Q-Q plots of the difference between summing N terms and
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summing M terms in the series representation for our own example.
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of the residuals to the Normal distribution—the same pattern as we saw for
the case of stable with o = 0.75. For our lowest choice of M, M = 10, the
residuals are definitely not Normal, but the improvement when M increases
is obvious. For M = 500 the distribution is close to the normal, and for
M = 5,000 the distribution of the residuals is almost indistinguishable from
Normal.

We notice a quite large difference to the case of stable, as in our example
we needed the variance of the residuals to be of order 107!° to have Normal
residuals, whereas for stable with o = 0.75 the order was only 107°. Of
course, there will always be differences between distributions, and we are
not able to use the level of the residuals from the case of stable directly for
other distributions—but it can be used as an opening guess as we did in this
example.

Again, this knowledge can be used for generating the distribution of J; by
summing 5,000 terms in the series representation and adding a Normal ran-
dom variable—the variance can be assessed by the method used in section
3.6. We have

1

v I,—E (1) 2
i—He2)

Fi_EO 1 1

2 NG

N{e)

%

7

> €

= # {z ;<2 <% - 1) + Elong(l)} . (3.33)

This connection between N and e can be used with (3.17) in order to calcu-
late the variance—but as it is difficult to make any use of (3.33) in practice,
we also here take a large short cut and use the empirical values from table 3.3.
Thus, we are able to generate J; by summing 5,000 terms in the series rep-
resentation and adding a Normal random variable with mean 7.2-10~* and
variance 1.7-10719. We note, that the mean of the residuals is not 0 because
we have not compensated our process as assumed in theorem 2.1.

For reference we state, that our program generated the 5,000 random vari-
ables (summing 50,000 terms in the series representation for each variable)
in little under half an hour.

4 Stochastic differential equations driven by gen-
eral Lévy processes

In this section we look at approximations to the solution of stochastic differ-
ential equations (SDE). Solutions to SDEs are often used to describe prices
of financial objects of interest such as shares, foreign exchange rates and in-
terest rates. But only in a few exceptional cases, such as the Black—Scholes
setup, one is able to give an explicit solution. This fact is one of the main
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reasons why the Black—Scholes method of pricing is still being heavily used
in practice. In other cases one is often dependent on simulations for approx-
imating sample paths and distributions—which is often difficult and time
consuming.

Returns over long time intervals (sums of returns over finer time intervals)
tend to be closer to a Gaussian distribution than ones over short horizons.
But this does not indicate that other Lévy processes, besides the Brownian
motion, are unfit for use in financial mathematics. The use of jump pro-
cesses has actually expanded in the last couple of years and thus general
Lévy processes are called for. Lévy jump processes are now considered as
more realistic models for applications in finance, mainly because the jumping
sample paths are closer to real-life financial data than the paths of Brownian
motion—e.g. we all know that jumps are very common when the exchange
opens in the morning. The class of Lévy processes is indeed very versatile
when it comes to modelling tails and jumps, and the opportunity for fitting
your own model is indeed present. The most popular Lévy processes in fi-
nance are the normal inverse Gaussian process (Ole E. Barndorff-Nielsen),
the generalized inverse Gaussian process (Ole E. Barndorff-Nielsen), hyper-
bolic Lévy motion (Ernst Eberlein) and stable processes (Samorodnitsky
and Taqqu [28] and John P. Nolan)—the references given are to large con-
tributors in the development of theory and practical use of the mentioned
processes, and a search on the given names will reveal a lot of articles.

In the last section we saw how to simulate Lévy processes by a series rep-
resentation, and if the process fulfilled the normal approximation (theo-
rem 2.1) we were able to simulate it much faster. We will in this section
have a look at how to simulate solutions to SDEs, which are driven by a
general Lévy process, when we make use of the normal approximation. By
making use of the normal approximation we will save a lot of simulation
time—this can then be used for simulating more sample paths or perhaps
in cases that used to be too time consuming.

4.1 The (generalized) Vasicek interest rate model

It is not the purpose of this section to show every aspect of simulating
solutions to SDEs that are driven by Lévy processes. This section is meant
to show how the results from the last section could be used in practice, thus
focusing on a simple application to illustrate the method. We will be looking
at one particular example—a linear equation with additive noise

t t
X = Xo —i—/ [c1(8)Xs + ca(s)] ds —|—/ o(s)dWs, te]0,1], (4.1)
0 0
where Wy is a Brownian motion, and then choose —cq(s) = ¢ > 0, ca(s) =

e >0, 0(s) =0 >0, Xg =29 > 0 as constants. This gives us the well
known Vasicek interest rate model (proposed by Vasicek [30])

t t
thxo-i-c/ [,u—Xs]ds—Fa/ dWs, te]0,1]. (4.2)
0 0
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X, is called the instantaneous interest rate. This is a standard (and very
easy) model for describing a fluctuating interest rate. X; fluctuates around
the value y—whenever it deviates from p it will be drawn back with speed
according to the parameter c. o determines the volatility. Notice, that (4.2)
is just a “shifted” Ornstein—Uhlenbeck process, i.e. setting u = 0 gives us
an Ornstein—Uhlenbeck process. A large drawback of the Vasi¢ek model is
that it can assume negative values. Thus, in practice the parameters will
have to be chosen, so that the probability of this undesirable event is very
small. We also mention that the solution to (4.2) is a Gaussian process.

If we replace the Brownian motion Wy in the Vasicek model (4.2) with a
general Lévy process Ly (other than Brownian motion) we have a new linear
equation

¢ t
X =x0+ c/ [ — X ds + a/ dLs, te]0,1], (4.3)
0 0

with a different type of additive “noise”. The “noise” is not Gaussian any-
more and the Lévy process (of course) has jumps. The solution to (4.3) is
known as

t
Xi=z0e "+ p(l —e ) + oeCt/ e“dLs, te]0,1]. (4.4)
0

Notice, that the integrand in (4.4) is continuous and obviously has bounded
variation, so if L has bounded p-variation'? for some p > 0, then the inte-
gral in (4.4) exists in the Riemann-Stieltjes sense. This result is due to a
theorem of Young [31]. He proved that, if f has bounded p-variation and g
has bounded g¢-variation with p~' +¢~! > 1, then the integral f; fdg exists
in the Riemann—Stieltjes sense whenever f and g have no discontinuities at
the same point. He also proved two smaller extensions to overcome the con-
tinuity problem—for more properties of this type of integration see Dudley
and Norvaisa [11]. We still need to know the p-variation of the general Lévy
process L, and luckily it has been shown by Lépingle [17] (sharpen your
French!) that every semimartingale has bounded p-variation for p > 2. This
is just what we needed because every Lévy process is a semimartingale—see
e.g. Jacobsen [14].

Thus the integral in (4.4) can be approximated by Riemann—Stieltjes sums

/ f(9)dL, = tm S F(E)AY L, (4.5)
0 n—oo ]

'2The p-variation, 0 < p < 0o, of a real-valued function f on [a,b] is defined as
vp(f) = vp(f3la, b)) = sup > [ f(ws) — fzi-1)]”,
"=

where the supremum is taken over all subdivisions k of [a,b]. If vp(f) < oo then f is
said to have bounded p-variation on [a,b]. Note, that 2-variation is not the same as the
quadratic variation of a stochastic process, which is used in It6 calculus.
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where AEH)L = L(tgn)) — L(tl@l), 51-(71) € ]ti—1,t;] and the limit is taken along
any sequence of partitions 7, of the interval [0,¢] with mesh(7,) — 0. For

convenience we normally choose the partition to be tgn) =i/nfori=0,...,n

and ffn) as the interval midpoints. The Riemann—Stieltjes approach saves us
a lot of energy because we are able to calculate (approximate) the solution
to (4.3) by Riemann—Stieltjes sums.

This setup is indeed very exciting as we now approach a situation where we
will be able to use our results from the previous section. We basically want
to compare the solution we get by using the normal approximation to the
real solution. This can be done w-wise by comparing the path of the solution
(4.4), based on our simulation of the Lévy process at summation level M
with added normal variable, to the path based on the higher simulation level
N. The meaning of ‘comparing’ is definitely not trivial—this notion will be
discussed in section 4.3.

In our simple example we know the explicit solution and this is of course not
the case in general applications. We will make use of knowing the explicit
solution by approximating the real solution at the high level N by Riemann
sums and approximating the solution at the lower level M with added normal
variable with the Euler scheme. We will approximate the real solution as
good as possible by choosing a very fine partition for the Riemann sums and
then hopefully we will be able to say whether the normal approximation
(and the Euler scheme) performs well. We will of course experiment with
the partitions, but it is our intention to keep the partition for Riemann sums
finer than for the Euler scheme in order to approximate the real solution as
exact as possible.

4.2 The Euler approximation

The Euler scheme is a natural way of approximating the solution to an SDE.
For better understanding we write (4.3) in the language of differentials

dX; = C(/,L — Xt)dt +odLs, te€e [O, 1}, (46)

with Xy = xz¢. The idea of the Euler scheme is to replace the differentials d¢
and dL; by differences on a discrete partition 7,,. This indicates the following
iterative scheme

xM = X
X = X\ ep- X )N +oAL i=1,...n,

(3

where A; = t; — t;—1 and A;L = L;; — Ly;—1. This determines the Euler
approximation X at the points ¢; of the partition 7,,—notice that ¢; ac-
tually depends on n which is suppressed in the notation. In practice one
often chooses an equidistant partition 7, : t; = i/n. It is common to lin-
early interpolate between the points t;, which defines a continuous process.
This is indeed not what we were looking for because our process can have
jumps, and therefore we will keep the process constant between jumps, i.e.
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Exact and numerical solution to SDE, n=5 Exact and numerical solution to SDE, n=20
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Figure 4.1: The Euler scheme at work for the SDE (4.6) with the parameters
from section 4.3. The numerical solutions are showed as dashed lines.

Xt(n) = Xt(in) for t € [t;, tir1[. As n increases the outcome is not obvious to
be what we hoped for, i.e. a convergence in some sense. This problem is
in the framework considered by Mikosch and Norvaisa [22], and has been

generally treated by Jacod and Protter [15] in the case of a multidimensional
SDE

X, = o +/0tf(XS_)dYS, teo,1], (4.7)

where f denotes a matrix f = (f%) of functions that are all continuous
differentiable and satisfy the linear growth condition ||f¥(z)|| < K(1 +
||z||) for some constant K and where the driving process Y is a vector of
semimartingales. This indeed covers the case of our linear SDE. They prove
that the FEuler scheme does work in the outlined situation and find the rate
of convergence. Thus we are able to use the Euler scheme for approximating
(4.4)—the solution to our SDE.

In figure 4.1 we have depicted the FEuler scheme at work for a solution of
the SDE (4.6) to appear in section 4.4. In order to see the improvement in
the approximation as the step size 1/n decreases, we have plotted the Euler
approximation of the same solution for n € {5,10,20,40}. This is not the
same step sizes as will be used in section 4.4, but these small choices enable
us to easily see how the scheme works in practice. We can see from the
graphs, that the Euler approximation is struggling in order to keep up with
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the jumping solution to the SDE. But as n increases we see a significant
improvement and it is not hard to imagine, that the approximation would
get even better if we choose an even larger value of n, i.e. a smaller step
size 1/n.

4.3 Simulation of solution to our SDE

We have now concluded our setup and are almost ready for simulating the
solution (4.4)—but we still need to specify the Lévy process Ls. Notice, that
in the light of the results from section 2, it is again only relevant to look at
the Lévy jump process Js.

In the previous section we focused a lot on stable processes and therefore
it is natural to stay in this class during our further analysis. We recall the
simulation results from section 3.5 and (again) choose o« = 0.75 because
the series representation converged nicely in this case. By choosing a sta-
ble distribution with such a small parameter «, we are aware of the fact,
that our model definitely is not suited for describing interest rates. Stable
processes could perhaps be used if the parameter a was chosen close to 2 in
order to avoid big jumps. However it is not the purpose of this section to
describe interest rates but to show how the results on the normal approx-
imation could be used for simulating solution to SDEs, which are driven
by a non-Gaussian Lévy process. Therefore in this section we have chosen
to work with the same stable process which previously proved a successful
simulation. Unfortunately we are not able to simulate stable paths with an
« high enough to consider modelling interest rates, so we will leave the idea
of interest rates behind and just think of the process as (shifted) Ornstein—
Uhlenbeck.

We also recall, that the summation levels in the series representation could
be chosen as M = 500 and N = 20, 000 in order to have nice results with this
particular a. Therefore we will reuse these parameters for our simulations
in this section.

We furthermore choose the following parameters when simulating the solu-
tion (4.4): z9 =4.1, u =4, ¢ = 0.5 and 0 = 1. The parameters are chosen
with the levels of interest rates in mind even though we know the driving
process is not well suited for this—as explained above.

We have treated the connection between the series representation of a ran-
dom variable and the series representation of a stochastic process in sec-
tion 3.1. There we already specified a series representation for the genera-
tion of a stable process in (3.8), and this is the one we now will be using for

generation of paths. We also need to define a partition 7, for the approxima-
(n)

tion of Riemann-Stieltjes sums, and not surprisingly we choose ¢,/ = i/n
for i =0,...,n and fl-(n) as the interval midpoints—furthermore we choose
n = 500 for a fine partition. For the case with Euler approximation we are
only summing 500 terms in the series representation, so there we will start
out with n = 125.

For the generation of paths we will again use the same programming lan-
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guage and random number generator as in the previous section. Our inten-
tion is to generate a lot of paths and then compare the path of the solution
(4.4), based on our simulation of the Lévy process at summation level M
with added normal variable, to the path based on the higher simulation level
N. When comparing paths it is common to assume that the two paths X,
and Xt(n) are ‘close’ whenever they are close at the interval endpoint ¢ = 1.
Therefore one often looks at moments of the endpoint differences, i.e. the
quantity

es(8n) = B[ X1 (w) — X{"(w)[*%, (4.8)

where the s in eg indicates that we are looking at a strong numerical solu-
tion—that is, a pathwise approximation X (™ which converges to X when
0, = mesh(7r,) — 0. The exponent 0.25 is chosen in order to make sure
the second moment of X; — X {n) exists—we know from Samorodnitsky and
Taqqu [28] that for an a-stable Y, E|Y|P < oo for all 0 < p < o whereas
E|Y|P = oo for all p > a.

We know from Jacod and Protter [15] that the Euler scheme in our setup
yields a strong numerical solution. We have however chosen a setup where
the real solution is known, so we are able to take a step further and look
at the differences over the whole path and not just only at the endpoint
differences. As a measure of pathwise closeness it is common to use the
difference at the point where the processes are most apart

E sup |X;(w) — X" (w)[25, (4.9)
t€[0,1]

Note, that (of course) we are not able to look at every ¢ € [0, 1] and therefore
the sup in (4.9) in practice will be discretized, i.e. the same as max over i/n
fori=0,...,n.

For completeness we should add, that a weak numerical solution aims at
approximating the moments of the solution. That is, it is not important how
close X (w) and Xt(n) (w) really are, because one only looks at the difference of
the moments—typically one would look at |Ef(X1)—Ef(X f"))\ while paying
attention to the existence of the moments used. This approach should only
be chosen in situations when there is no strong solution available—situations
where we do not know the path. Protter and Talay [25] deal with the rate of
convergence of the Euler scheme for Lévy driven SDEs in the case of weak
solutions.

For the investigation of the large number of reiterations of (4.9) we use the
same idea as Kloeden and Platen [16] in their section 9.3. They carry out a
practical example where they use an error estimate based on the same type
of differences as (4.8)—we will do the same, just for (4.9). The idea is to
estimate the absolute error by the statistic

K
.1 (n) ¢, 1]0.25
€= — sup | Xyi(w) — X7 (w)[77. 4.10
e 2 2 W) = X{7 ) (410)
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We know from the Central Limit Theorem that the error é asymptotically
becomes a Gaussian random variable and converges in distribution to the
(true) expectation € as K — oco. We cannot generate an infinite number
of paths, so if we furthermore arrange our simulations into B batches of
K simulations, we can estimate the variance o2 of é. We denote by the
subscripts ¢, j the ith path in the jth batch and thus for the average errors
write

= Kzf‘[z%]’xw w) = X7 (@)** (411)
S

for the B batches j = 1,...,B. The B batches are then independent and
approximately Gaussian for large K. We can estimate the mean of the batch
averages as

B B K
1 n
EZ K—ZZ sup |X;5(w) - XD (@)*®, (4.12)

B
1
~2 § ~ 22
g, = ﬂ (Ej 6) (413)

to estimate the variance 62 of the batch averages. The estimate of the
variance can be used for e.g. calculating confidence intervals. For B > 3 we
know that the random variable

(4.14)

is approximated by the Student t-distribution with B — 1 degrees of free-
dom, mean zero and variance (B — 1)/(B — 3). Some calculations then
show that a confidence interval for € has the form (é — A€, € + Aé) where
Aé=tp_11-a/2/02/B. tp_1,1-q/2 is the (1 —a/2)th quantile of a Student
t-distribution (two sided) with B — 1 degrees of freedom and a is the signif-
icance level. That is, the value of {g_;;_,/2 can be found by lookup in a
quantile table.

4.4 The normal approximation when simulating solutions to
SDEs

According to Kloeden and Platen [16] the batch averages can be interpreted
as Gaussian for batch sizes K > 15. After doing some test runs we quickly
see that this value of K is too small—we will start out by using a batch
size of K = 100 and simulate B = 100 batches. For comparison we do two
similar simulations, where the first will be done with B = 150 batches with a
batch size of K = 1,000 and the last one with B = 200 batches with a batch
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€ 52
B =100, K =100, n = 200 41-107' | 54-1074
B =100, K =100, n = 500 3.5-1071 [ 2.9.-1074

B =100, K =100, » =1,000 |3.3-107'|1.9-107*
B =100, K =100, n = 2,000 31-107' [ 1.2-1074

B =150, K = 1,000, n = 200 41-1071 | 6.7-107°
B =150, K =1,000, n =500 |3.5-107"'|3.6-107°
B =150, K =1,000, n=1,000 | 3.3-107" | 2.2-107°
B =150, K =1,000, » =2,000 | 3.1-10~' | 1.5-107°

B =200, K = 1,500, n = 200 41-1071 | 52-107°
B =200, K = 1,500, n = 500 3.5-1071 | 29.107°
B =200, K =1,500, n=1,000 | 3.3-10~"' | 1.7-107°
B =200, K =1,500,» =2,000 | 3.1-107' | 1.1-107°

Table 4.1: Values of the estimators é and 62 for different choices of B, K
and n.

size of K = 1,500. Hopefully we will be able to see the effect of increasing
the total number of paths. We recall, that we decided to use a partition
n = 500 for the Riemann sums and n = 125 for the Euler approximation,
n = (500, 125). We would also like to see the effect of decreasing the step
size 1/n, and after a few test runs (to determine the simulation time) we set-
tle on using both our chosen partition of n = (500, 125), a coarser partition
n = (200,50) and some finer partitions n = (1,000;250), n = (2,000;500)
for the same paths in the two simulations. In this way we are definitely
able to see the effect of decreasing the step size, because we use the same
simulation paths for all choices of partition.

We notice from (4.14) and the formula for Aé later in section 4.3, that we
need to increase the number of batches fourfold (that is, increase the num-
ber of simulations fourfold) in order to halve the length of the confidence
interval. We will be able to roughly test this with our three simulation runs.
After running the three simulations we decide to use simulation data for the
two smaller simulations (B = 100, K = 100 and B = 150, K = 1,000) by
using intermediate values from the largest simulation (B = 200, K = 1, 500).
In this way we are capable of comparing the graphs as we diminish the devi-
ations between different simulations. We have depicted the Q-Q plots of the
absolute error of ¢ in figure 4.2—we have only included the graphs for the
finest partition n = (2,000;500) for each of the three choices of B and K, as
the plots for the other partitions shows similar shapes with larger variance
for increasing step size. The first thing we notice from the graphs is that
the estimator of the absolute error € is not quite normal, as we see deviations
in the tails. The distribution of the absolute error ¢ has a lighter tail at the
lower end of the distribution and a heavier tail at the upper end, but the
shape improves when we increase the number of simulations. The values of
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Q-Q plot of epsilon, B=100, K=100, n=2.000 Q-Q plot of epsilon, B=150, K=1.000, n=2.000
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Figure 4.2: Q-Q plots of the absolute error ¢€;.

the estimators € and 62 (also for the other choices of partition 7) are shown
i table 4.1. The values show, that there is a gain in the approximation when
choosing a finer partition—the estimator of the absolute error é decreases
when choosing a finer partition. Furthermore the estimator of the variance
62 also decreases when choosing a finer partition, making our error estimate
more reliable. If we look across the three different values of the total number
of paths (10,000, 150,000 and 300,000) we also notice, that the estimators of
the absolute error € are equal in the three cases. This tells us, that the mean
value € is well determined by simulating to the lower level. The precision
can be seen from the variance estimates. The estimators of the variance &2
also decrease when increasing the total number of paths—thus, we are also
getting a better estimate of the mean by simulating more paths. We would
also like to mention, that the graphs still remind us of the heavy tails of the
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Rate of convergence for the Euler approximation
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Figure 4.3: Rate of convergence for the Euler approximation in the case
where B = 200, K = 1, 500.

stable distribution. It is evident that the approximation does face a hard
challenge in keeping up with the very big jumps, but this can be minimized
by choosing a sufficiently fine partition.

The simulation time is linear in both the number of paths and the step size of
the Euler approximation—simulating the double number of paths will take
twice as long and halving the step size will also take twice as long. We are
interested in what is the more profitable solution for reducing the variance—
simulating more paths or decreasing the step size. There is no unique answer
as this matter is quite complicated, and if we furthermore decrease the step
size we also have the ‘side effect’ of decreasing the error estimate. But we
will have a closer look at the two different approaches in order to get more
familiar with them. In figure 4.3 we have plotted our four choices of step size
against the absolute error in the case where B = 200, K = 1,500. Notice,
that we have taken the logarithm to both the step size and the absolute
error before plotting. This is done in order to see whether the absolute error
decays like a power function (i.e. like y = 1/2P, p > 0) when n increases.
If this is true we denote the power function as the rate of convergence. We
know from Jacod and Protter [15] that (under mild conditions) this rate
exists and is 1/y/n when we are looking at the traditional strong quantity
(4.8)—but is that also the case for our sup-strong quantity (4.9)?7 As we can
see from figure 4.3 the rate is not constant and this indicates that there is
no convergence rate in the usual (power function) sense. The slope between
1/n =1/200 and 1/n = 1/500 is approximately 0.16 and decreases down to
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95% confidence intervals for the Euler approximation

Absolute error
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Figure 4.4: 95% confidence intervals for the Euler approximation as B in-
creases and K = 100 is kept fixed.

approximately 0.08 between 1/n = 1/1,000 and 1/n = 1/2,000. Thus we
can see that the convergence is slower than a power function. This confirms
that there is quite a difference between the strong quantity (4.8) and our
sup-strong quantity (4.9) with respect to convergence.

Previously in this section we mentioned, that in order to halve the length of
the confidence interval for the absolute error, we need to increase the num-
ber of simulations fourfold. In figure 4.4 we have pictured the calculated
95% confidence intervals for our largest simulation when we keep K = 100
fixed. Thus we are again dividing our largest simulation into new batches—
this time in order to see how the increasing number of simulations effect the
confidence intervals when the batch size is kept fixed. The figure confirms
our expectations as the confidence interval with 150,000 paths is approxi-
mately 1/4 of the one with 10,000 paths and the confidence interval with
300,000 paths is approximately 1/ V2 of the one with 150,000 paths.

The simulations gives us an idea of what is needed in order to simulate so-
lutions to SDEs driven by general Lévy processes. The series representation
of the Lévy process and the normal approximation is what makes these sim-
ulations possible. If we were not able to use the normal approximation, we
could not simulate solutions with the kind of precision. We have simulated
a very high number of processes, and by looking at our simulation results,
we have not decreased the step size to the same extent. By looking at the
variances in table 4.1 we notice, that in order to get a better approximation
we should definitely use our given simulation time in order to decrease the
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step size further and thus not simulate that many processes. Furthermore
it would of course always be a good idea to use a better approximation than
the Euler scheme, such as the Milstein scheme. The Milstein approximation
adds an additional correction term to the Euler approximation and usually
leads to a substantial improvement of the numerical approximation with
Brownian Motion as driving process. Nothing similar is known in the case
of an SDE driven by Lévy jump processes.

We state, that our largest simulation with 300,000 paths and step size
1/2,000 took 5 days to run on our 850Mhz P-III.
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5 Conclusion

The theory of Lévy processes has been thoroughly examined in order to
present this thesis. We rely extensively on the Lévy—Khintchine representa-
tion and the Lévy—Ito decomposition—these are the backbones for splitting
a Lévy process into a drift, a Brownian term and two jumping terms as we
recall from (2.1). Starting from these building blocks, we have focused on
simulating the jump part, as the other two parts are well treated by stan-
dard simulation techniques. A particular property for a wide class of these
jumping motions has been presented by Asmussen and Rosiriski [4]—the
approximation of small jumps of Lévy processes by use of a Normal random
variable. We have examined how this property behaves in simulations by
series representations, and have on the way considered three different Lévy
jumping motions.

For the symmetric a-stable Lévy motion we found, that we were able to
simulate the case of & = 0.75 40 times faster by making use of the normal
approximation. Instead of summing 20,000 terms in the series representa-
tion we could be content with just 500 terms and adding a normal random
variable, because we showed, that the residual between the two was indis-
tinguishable from normal. In fact, one might accuse us for being a little
conservative by choosing the level 500, as the level of 100 was already very
close to normal residuals. It could indeed be argued, that it was close enough
to be used without hesitation. This would give an additional factor of one
fifth to the simulation time, and thus improving the previous factor of 40
times faster to 200 times faster. This is indeed noticeable.

We also tried to simulate a symmetric a-stable Lévy motion with o = 1.5,
but did not come to near the same success as in the case of & = 0.75. The
series representation showed a drastic change in convergence to the worse,
and we were not able to simulate to a lower level in order to use the normal
approximation. As an experiment we argued, that we should have the same
small theoretical variance of residuals in this case, as for a = 0.75. This
meant, that we needed a lower level of 4.0 - 10! in order to use the nor-
mal approximation for o = 1.5—this is of course not even near something
we are able to simulate. Even though we only examined symmetric stable
processes, our results can without difficulties be applied for any skewed and
translated stable.

We also looked at the Gamma process, as the process did not fulfill the
requirements for the normal approximation. In some sense the Gamma pro-
cess was very close to meeting the requirements, but our simulations showed
that it definitely would be a bad idea to use the normal approximation in
connection with Gamma processes. The residuals did not show normal be-
havior and they did not approach the normal distribution when we summed
more terms in the series expansion, and thus decreased the residuals. But on
the other hand, the series representation did converge fast enough in order
to be used without the normal approximation. Furthermore the Gamma
distribution is not heavy tailed and therefore one often does not need that
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many variables in typical applications.

The last Lévy jumping motion we considered was our so-called own exam-
ple, as we wanted to use the theory on a general Lévy jumping motion. We
defined our own Lévy measure and used the inverse Lévy measure method
to obtain a series representation—thus we were able to show convergence of
the residuals towards a normal distribution. This meant, that we were able
to choose simulation levels without prior knowledge of the particular Lévy
motion, and thus showing how to make use of the normal approximation in
a general setting.

As an application of our results we considered an SDE of the (shifted) Orn-
stein—Uhlenbeck type, driven by a non-Gaussian Lévy process. This process
was chosen because the solution is known explicitly, and in this way we were
able to compare the explicit solution to a numerical solution obtained by
the Euler scheme. In the light of our nice results with stable we chose to use
a stable process with a = 0.75 as driving process. In the sections regarding
the normal approximation we only looked at endpoint differences in order
to determine closeness of processes, but in the SDE section we tried to go
a little further and looked at the sup-strong quantity (4.9). We knew from
our previous results, that the normal approximation would perform well, so
we concentrated on approximating the explicit solution. We were able to
approximate the solution to the SDE satisfactory, and showed how the er-
ror estimate between the explicit solution and our numerical approximation
decreased when choosing a finer mesh for the approximation. In contrast to
using a traditional strong quantity (4.8), which by Jacod and Protter [15]
has a (power) convergence rate of 1/y/n, we showed that when using the
sup-strong quantity (4.9) no (power) rate exists. This fact is notable be-
cause we are not aware of any theory on this issue.

This thesis leaves us with a method and an intuition on how to determine
simulation levels when using the normal approximation. It shows, that
the normal approximation can be a useful tool for simulating Lévy jump
motions—in some situations it might be the only way to simulate a process
in a given amount of time.
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A Appendix

A.1 Distribution of random variable from section 3.6

We will now find the distribution of [Ff + FZT;_Z»] by transformation—the
distribution is used to calculate the variance of (3.24) in section 3.6. The
transformation is done by use of theorem 1, section 18, from Andersson and
Tolver [2].
Let I'; and F;;i be independent and define Ay = 1, Ay = j — i. The trans-
formation

h: ]0,00[ = ]0,00[, (x1,22) — (2} + z120,71)
is bijective and continuous, and the inverse

h_l(ylaZJQ) = (y2, (y1 — y%)/yz),

is continuous and differentiable. We then have
0 1
Dh™t(yiye) = | 1 -1 _,
Y2 y2

and thus

1
|det DA™ (y1,12)| = ‘ — =
Y2

We then have

Lioco2 (W1, %2) — 2\ (m-wd 1
9(y1,y2) = 0eclP 2L 27 Yyt N9 o ( +y2) 1
L(A)l(A2) Yo

and by integrating over yo we finally arrive at

Aa—1 .
1jo,00[(¥1) /00 A1_2<y1 y%) 2 e_(y1y2y§+y2)dy2
0

9(y1)

LA (A2) 2 U0
e ¥ e A1—A2—1 2\ Aa—1 Y2
T T Ow) - dys1 ,
1‘()\1)1“()\2)/0 Y2 (y1 ?/2) e¥2dyalyo oo((y1)
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